
TheWizCorner.hyper

TheWizCorner.hyper ii

COLLABORATORS

TITLE :

TheWizCorner.hyper

ACTION NAME DATE SIGNATURE

WRITTEN BY August 26, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

TheWizCorner.hyper iii

Contents

1 TheWizCorner.hyper 1

1.1 The Wizard Corner (Wed Jul 15 16:44:17 1992) . 1

1.2 The Wizard Corner : Introduction . 1

1.3 The Wizard Corner : The ’pvcall’ command . 2

1.4 The Wizard Corner : Description of internal memory formats . 10

1.5 The Wizard Corner : The bases . 11

1.6 The Wizard Corner : main base (pvcall 36) . 11

1.7 The Wizard Corner : eval base (pvcall 30) . 15

1.8 The Wizard Corner : arexx base (pvcall 31) . 16

1.9 The Wizard Corner : debug base (pvcall 32) . 16

1.10 The Wizard Corner : file base (pvcall 33) . 19

1.11 The Wizard Corner : general base (pvcall 34) . 19

1.12 The Wizard Corner : list base (pvcall 35) . 21

1.13 The Wizard Corner : screen base (pvcall 40) . 25

1.14 The Wizard Corner : memory base (pvcall 41) . 30

TheWizCorner.hyper 1 / 32

Chapter 1

TheWizCorner.hyper

1.1 The Wizard Corner (Wed Jul 15 16:44:17 1992)

Contents:

Introduction

The ’pvcall’ command

Description of internal memory formats

The bases
All bases:

main base (pvcall 36)

eval base (pvcall 30)

arexx base (pvcall 31)

debug base (pvcall 32)

file base (pvcall 33)

general base (pvcall 34)

list base (pvcall 35)

screen base (pvcall 40)

memory base (pvcall 41)
Various:

Back to main contents

1.2 The Wizard Corner : Introduction

WARNING !!! ONLY READ IF YOU THINK YOU ARE VERY EXPERIENCED WITH
POWERVISOR!

TheWizCorner.hyper 2 / 32

This file contains all information for the experienced script writer.
It explains the powerful pvcall command and lists the contents of
some internal PowerVisor data structures. With the information contained
in this chapter in combination with the Scripts chapter you can make very
powerful scripts. Some examples are given in the ’Source’ subdirectory.

Note that there are include files (both .h and .i) for all
structures given in this file. These include files can be found in the
PVDevelop/include/PV subdirectory.

For SAS/C users there is also ’PVCallStub.lib’. Using this library
you can more easily call the pvcall routines from C. You can find this
library in PVDevelop/lib.

If you want some examples you can look in the ’Source’ subdirectory.
This directory contains sources in C and machinelanguage using the
PVCallTable and other internal variables.

1.3 The Wizard Corner : The ’pvcall’ command

The pvcall command can be used to access internal variables and to
install some extra features. The first argument of ’pvcall’ is the
number of the function you want to use (see below for a list of all
functions). After this number follow the extra arguments (if any).
Note that not all ’pvcall’ functions are callable from within PowerVisor.
Some are only intended to be called from within a machinelanguage script.
To call a ’pvcall’ function from within a machinelanguage script you can
use the PVCallTable (offset 34 in the PowerVisor-port). This is a pointer
to the table containing all pointers to the ’pvcall’ functions. The pointer
to the PVCallTable is also automatically available if your machinelanguage
routine is executed from within PowerVisor (in register a2) (see the
Scripts chapter for more information about machinelanguage scripts).

The return value from these functions is always in d0.
If a certain pvcall function is only available from machinelanguage an
asterix (’*’) is put after the number. All functions callable
from both machinelanguage and PowerVisor expect their arguments on a
commandline. If you want to use any of these functions in machinelanguage
you have to build a commandline and provide the pointer to it in a0.
Except for the ’Install<xxx>Cmd’ functions (’Pre’ command, ’Post’ command,
’Quit’ command and ’Snap’ command)
all functions preserve registers d2-d7 and a2-a6. The ’Instal<xxx>Cmd’
functions preserve d2-d7 and a3-a6.

Number Function

0 Create a new PowerVisor function
<name>
<address of routine>

this is a pointer to a machinelanguage routine. When this
routine is called, a0 points to the arguments and a2
points to the ’PVCallTable’.

1 Generate an error

TheWizCorner.hyper 3 / 32

<error number>

2 Advance history buffer one line. Nothing happens if this line
is the last. This function updates 252:4 in MainBase.

3 Lower history buffer one line. Nothing happens if this line is
the first. This function updates 252:4 in MainBase.

4 Get current history line and copy to stringgadget buffer.
The current history line is the line pointed to by 252:4 in
MainBase. If 252:4 is 0 the stringgadget buffer is cleared.

5 Refresh the stringgadget. Use this function after you have
changed something in the stringgadget buffer.

6 Install a ’Pre’ command. This is a command that is executed
before the commandline is parsed that is just typed in by
the user. The command can find the pointer to the commandline
in ’ScreenBase’ (the stringgagdet buffer) and can make changes.
See the Technical information chapter for the exact moment
of the execution of this command. When you generate an error in
the ’Pre’ command, you will prevent further execution (The user
can override both the ’Pre’ and ’Post’ commands with the ’\’
prefix commandline operator).

<commandstring>

7* Evaluate an expression.
All expression features that PowerVisor supports are supported
by this function (even groups).

<a0 = pointer to expression>
-> <a0 = pointer after expression or 0 if error (flags)>
-> <d0 = resulting value>

8 Remove a variable, special variable, constant or function.
Be careful with this command since you can remove internal
variables like ’rc’, ’mode’ and ’error’ with this function.
Removing these variables will certainly do no good.

<name>

9* Parse a string from the commandline.
The ’\’ and ’·’ (strong quote) operators are supported.
Note that you are NOT responsible for freeing the string.
The string is automatically added to the autoclear list.
This also means that you must copy the string if you want
to remember it permanently.

<a0 = commandline>
-> <a0 = pointer after string or 0 if error (flags)>
-> <d0 = pointer to string>

10 Copy string to the stringgadget buffer
<string>

11 Add string to the history buffer. Note that the PowerVisor
history buffer never contains two equal history lines after
each other. This function checks if the previous history line
is equal to the one you are going to add. If they are equal
nothing happens

TheWizCorner.hyper 4 / 32

<string>

12 Get address of the stringgadget buffer
-> <address>

13 Append string to the stringgadget buffer
<string>

14 Skip spaces. This command skips all spaces in a string (’,’
chars are also considered spaces).

<string>
-> <pointer to first non space character>

15 Set cursor position in stringgadget. Use this command to set
the cursor position where it must be the next time a ’Scan’ is
executed. The internal ’Scan’ routine is called to get the
commandline and for the scan command.

<position>

16 Install a ’Post’ command. This is a command that is executed
after the commandline is parsed and executed that was typed
in by the user.

<commandstring>

17 Set debug mode for PowerVisor.
When debug mode is on, PowerVisor prints each command before
it is executed (after alias expansion) and also prints
the return code of each command. This is useful for debugging
recursive aliases, scripts, macros and other special
things.

<debug number> = 0 for no debug, 1 for debugging info

18 Get execution level
-> <execlevel>

0 = commandline
1 = script
2 = attach (IDC)
3 = for command
4 = to command
5 = with command
6 = tg command
7 = on command
8 = refresh
9 = group command
10 = snap command
11 = intuition handler command
12 = quit handler command
13 = signal handler command
14 = OBSOLETE
15 = called from ’ExecCommand’ portprint function
16 = Pre command
17 = Post command

19 OBSOLETE

20 Get mStringInfo. Note that when you change something in this
structure, you will probably have to call ’pvcall 52’ or

TheWizCorner.hyper 5 / 32

’pv 5’ to remake the stringgadget.
-> <pointer to StringInfo>

Fields in the StringInfo structure.
offs size function

0 4 Buffer
4 4 UndoBuffer
8 2 BufferPos
10 2 MaxChars
12 2 DispPos
14 2 UndoPos
16 2 NumChars
18 2 DispCount
20 2 CLeft
22 2 CTop
24 4 LayerPtr
28 4 LongInt
32 4 AltKeyMap

21 Get Snap Buffer. This buffer is 120 bytes long.
-> <pointer to snap buffer>

22 Install command before ’snap’. Using ’pvcall 21’ you can change
something in the string that is snapped. If you return 0 from
this command the ’snap’ will not happen.

<commandstring>

23 OBSOLETE

24 Beep
<period>
<time>

25 Get address of variable or function
<variable name>
-> <address or null if it does not exists>

26 OBSOLETE (Since V1.10)

27 Create constant
<name>
<value>

28 Compare two strings
<pointer to string 1>
<pointer to string 2>
<length>
-> -1 if equal

29 Call machinelanguage script
<pointer>

Routine is called with a0 the pointer to the rest of the
commandline, a1 the pointer to the RC variable, a2 the
pointer to the PVCallTable and d6 equal to 0 (d6 is
normally the number of arguments but ’pvcall 29’ does not
allow you to give arguments to the routine).
The result of this ’pvcall’ is the result from the

TheWizCorner.hyper 6 / 32

routine in d0.

30 EvalBase
-> <EvalBase>

31 ARexxBase
-> <ARexxBase>

32 DebugBase
-> <DebugBase>

33 FileBase
-> <FileBase>

34 GeneralBase
-> <GeneralBase>

35 ListBase
-> <ListBase>

36 MainBase
-> <MainBase>

37 Routines. You may change this routine table but if you do so
you must make sure that the list remains sorted (at least
sorted for the first letter).
Note that this table actually points into the RexxList
table containing all Rexx commands (see ’pvcall 39’).
Note that <type> is not used by PowerVisor but is used by
the ARexx interpreter

-> <pointer to routine table>
<pointer to string>.L <type>.L <pointer to routine>.L
.
.
.
0.L 0.L

38 ModeRoutines. You may change this table. This list need not be
sorted

-> <pointer to mode routine table>
<pointer to string>.L <pointer to routine>.L
.
.
.
0.L 0.L

39 RexxList. You may change this table. The first part of this
table consists of all PowerVisor functions. The second part
of table (also pointed to by ’pvcall 37’) consists of all
PowerVisor commands.

-> <pointer to rexx command list>
<pointer to string>.L <type>.L <pointer to routine>.L
.
.
.
0.L 0.L 0.L

<type>

TheWizCorner.hyper 7 / 32

0 = Normal function, returns number
1 = String function, returns string

40 ScreenBase
-> <ScreenBase>

41 MemoryBase
-> <MemoryBase>

42 OBSOLETE

43 Get pointer to stringgadget
-> <stringgadget>

Fields in the StringGadget structure.
offs size function

0 4 NextGadget
4 2 LeftEdge
6 2 TopEdge
8 2 Width
10 2 Height
12 2 Flags
14 2 Activation
16 2 GadgetType
18 4 GadgetRender
22 4 SelectRender
26 4 GadgetText
30 4 MutualExclude
34 4 SpecialInfo
38 2 GadgetID (not used by PowerVisor)
40 4 UserData (not used by PowerVisor)

44 OBSOLETE

45 OBSOLETE

46* Error handler. The error handler executes a routine (pointer
in a5). If there is any error in the routine, control will
return back to after the call of this routine (the ’Z’ flag
will be set to indicate that there was an error). All registers
are preserved for the routine.

<a5 = pointer to routine>

47 Install a command that will be executed before PowerVisor
quits. Using this function you can cleanup your memory
before it is too late. If you return 0 from this function
the quit will not happen.

<commandstring>

48 Search the alias list and return the converted command. If the
command is not in the alias list the original commandline is
returned. Note that this function always returns a pointer to
a new string. You must free this string later with ’pvcall 51’.

<string>
-> <new string> (PV block)

49* Add a memory region allocated with ’pvcall 50’ to the

TheWizCorner.hyper 8 / 32

autoclear list. The autoclear list contains at most 10
(by default, you can change this value in ’MemoryBase’)
allocations. If more than 10 allocations are added the
last allocation (timewise) is removed and freed. This means
that this method is not absolutely safe, but safe enough
for most purposes. The autoclear list is mostly used for
strings.
Note that it is not possible to remove something from this
list. This means that once some pointer is added you may never
free the pointer yourselves.
PowerVisor also frees all memory in this list before quiting.
Note that PowerVisor uses this list for all strings and string
pointers the user uses.

<d0 = pointer>
-> Z flag is set if there was an error

50* Allocate a block of memory. The memoryblock allocated with this
function is called a PV block (do not confuse with PV
memoryblock since this is something completely different). A PV
block is a pointer after the size. This size is contained in a
word if the block is smaller than a 65533 bytes. Else it is
containted in a longword.
Note that you must explicitelly free this block with
’pvcall 51’ except if you add this block to the autoclear list
with ’pvcall 49’ or to the global autoclear list with
’pvcall 55’.

<d0 = size>
-> <d0/Z flag = pointer to PV block or 0 if error>

51* Free a PV block. Do not free a PV block when it is added to the
autoclear list using ’pvcall 49’ or when it is added to the
global autoclear list with ’pvcall 55’. Generally it is not
safe to free memory not allocated with ’pvcall 50’ (there are
exceptions like ’pvcall 48’ for example).

<a0 = pointer>

52 Compute the gadget and the intuition signal bits. Use this
function when you have changed something to the StringInfo
structure or the Gadget structure, or when you have changed the
IDCMP values for the PowerVisor window.

53* Print a string. The printing will stop when the 0 character is
encountered in the string or when d3 characters are printed.
You may also enclose linefeed characters in the string
(ascii 10).

<a0 = pointer to string>
<d3 = length>

54* Print a number. Note that this function may be interrupted by
the user. If you want to be absolutely sure you should use
the errorhandler (’pvcall 46’) for this routine.
Note that the previous routine (’pvcall 53’) is safe and can’t
be interrupted.

<d0 = number>

55* Add a pointer to a PV block to the global autoclear list. This
is the list where all allocations from the ’alloc’ function

TheWizCorner.hyper 9 / 32

reside. Note that when you have added the pointer to this list
you must not forget to remove the pointer from the list when
you free the PV block with ’pvcall 51’ (Use ’pvcall 56’ for
this purpose). (Use the showalloc command to see all
allocations in this list).

<d0 = pointer to PV block>
-> <Z flag is true if not enough memory to add it>

56* Remove a pointer to a PV block from the global autoclear list.
Note that you are still responsible for freeing the PV block.

<a0 = pointer to PV block>

57* Close a PV handle.
You must remember that when you close a standard PV handle
(like the PV handle for the help file), you MUST set the handle
value in the corresponding base to 0. Otherwise PowerVisor will
try to close the file again.

<d1 = pointer to PV handle>

58* Reallocate a PV memory block.
<a0 = pointer to PV memory block>
<d0 = new size (if 0 block is freed)>
-> <a0 = pointer to the same PV memory block (unchanged)>
-> <d0/Z flag = pointer to memory or 0 if no success>

59* Reallocate a PV quick block.
<a0 = pointer to PV quick block>
<d0 = new size (if 0 block is freed)>
-> <a0 = pointer to the same PV quick block (unchanged)>
-> <d0/Z flag = pointer to memory or 0 if no success>

60 OBSOLETE

61* Refresh a logical window
<a0 = pointer to logical window>

62* Snap a word from a position in a logical window
<a0 = pointer to logical window>
<d0 = x position (relative to physical window)>
<d1 = y position>
<a1 = buffer for word>
<d2 = length of buffer>
-> <d0/Z flag = resulting length of buffer or 0>

63* Disassemble some memory
<a0 = pointer to string space (make it big enough)>
<d0 = address to disassemble>
<a6 = pointer to library (or NULL), this is in fact the

contents of the ’a6’ variable. When a6 <> 0 PowerVisor
will disassemble library calls with the correct
names instead of the offset>

-> <d0 = number of bytes disassembled>
-> <a0 = pointer to end of string>

64 Disassemble some memory. Commandline version
<string pointer>
<address>

TheWizCorner.hyper 10 / 32

<library pointer or 0>
-> <number of bytes disassembled>

65 Put a character on the logical window without disturbing the
rest of the line. WARNING only use this function for a VISIBLE
position on the logical window. If the real size of the logical
window is bigger than the visible size this function is rather
dangerous. This function is useful if you want to print
multicolored messages (using the ’prefs pens’ command
(see prefs))

<character>

1.4 The Wizard Corner : Description of internal memory formats

PV block
A PV block is a pointer to memory. It is used quiet often.
You can use the ’pvcall 50’ and ’pvcall 51’ functions to
allocate or free such blocks. Be careful when you free PV blocks
that you have not allocated. If you want to be totally safe you
should always clear the variable in the appropriate base when
you free a PV block. If it is absolutely unsafe to free a certain
PV block, a warning will be given in the description (see below).
Otherwise you may assume that you can use the PV block.

<Size> bytes big
/ \

/ \
/ \

+--------+------------+
+-> | <Size> | Memory ... |
| +--------+------------+
| ^
| |
| PV block points to this
|
+------ Size is 2 bytes or 4 bytes long

If size is 2 bytes long the PV block will not be
long word alligned.

PV memory block
A PV memory block is a relocatable piece of memory. You can use
’pvcall 58’ to manage this memory. Note that after a reallocmem
(’pvcall 58’) the memory block can be moved to another place.

<Size> bytes big
/ \

+-----------------+ / \
| <Size> of block | / \
+-----------------+ +------------+
| Ptr to block |->| Memory ... |
+-----------------+ +------------+

PV quick block
A PV quick block is an optimized version of the PV memory block. It
is optimized for speed. A PV quick block is always allocated too big.

TheWizCorner.hyper 11 / 32

This has the advantage that you need less size changes of the PV
quick block. (size changes can be timeconsuming because it can
happen that the memory must be moved to another place). You can use
’pvcall 59’ to manage this memory.

<rsize> bytes big
/ \

+--------------------------+ / \
| Logical <lsize> of block | / \
+--------------------------+ +-------------------------------+
| Pointer to block |->| Memory (lsize significant)... |
+--------------------------+ +-------------------------------+
| Real <rsize> of block |
+--------------------------+

PV handle
PV handles are filehandles used by PowerVisor for buffered file IO.
The only operation you can do on a PV handle is ’pvcall 57’.

EXEC block
A normal block allocated with AllocMem (exec).

DOS file
A normal DOS filehandle (BPTR).

1.5 The Wizard Corner : The bases

The rest of this chapter is dedicated to the internal data structures. You
can get the pointers to these structures with the ’pvcall’ commands.
Read-only fields are indicated with an asterix (’*’) in front of the line.
A read-only field does not always mean that changing it may harm
PowerVisor. It can also indicate that PowerVisor only uses the field once
and changing it won’t have any effect.
All other fields can be modified but you must make sure that you follow
the conventions: A PV block must remain a PV block and so on.
You can use ’pvcall 51’ to free a PV block. When there is some restriction
on the use of an internal variable it is mentioned in the list.

Note that all structures described below are also available in include
file form (both .h and .i include files). See the ’PVDevelop’ subdirectory.

1.6 The Wizard Corner : main base (pvcall 36)

Offset Size Function

* 0 2 OS version (1 if 2.0 or higher)

* 2 4 DosBase

* 6 4 IntuitionBase

* 10 4 GraphicsBase

* 14 4 UtilityBase (0 in AmigaDOS 1.2/1.3 version)

* 18 4 ExpansionBase

* 22 4 DiskFontBase

TheWizCorner.hyper 12 / 32

* 26 4 PowerVisorBase

* 30 4 CLI commandline for PowerVisor

* 34 4 CLI commandline length
38 4 Pointer to error file handle (DOS file)

< 42 8 >
50 2 Speed of refresh
52 2 Refresh counter
54 4 Command that is refreshing (PV block)
58 (2+2)*6 Codes (WORD) /Qualifier (WORD) table

Key Default code Default Qualifier
--
Break ESC none
HotKey / right-shift+right-alt
Pause HELP right-alt
NextWin TAB none
HistUp UPKEY none
HistDo DOWNKEY none

Same keys as in ’prefs key’ command
82 1 If equal to 1 we are in PowerVisor debug mode

(see ’pvcall 17’)
< 83 3 >

86 4 ’Pre’ command (PV block)
90 4 ’Post’ command (PV block)
94 4 ’Quit’ command (PV block)
98 4 Pointer to last history string in history buffer

(or 0 if the history buffer is empty). This is
the first history line that is going to be deleted
when there are too many lines in the history
buffer. For the format of history lines see below

102 2 Last error code
104 2 Execution level (pvcall 18)

* 106 (4+4)*6 Signal bitnumbers (LONG) and signal sets (LONG)

Hold
Sending this singal to PowerVisor will cause
PowerVisor to reopen it’s screen after a
’hold’.

PortPrint
Use this signal bit in conjunction with
sending a message on the PowerVisor port.

IDC
(Input Device Command) Using this signal you
can execute IDC commands.

GadgetRefresh (to PowerVisor.task)
Say to PowerVisor.task that the stringgadget
needs refreshing.

PVtoFront (to PowerVisor.task)
Say to PowerVisor.task that PowerVisor should
come to the front. Sending this signal also
causes a ’Hold’ signal to PowerVisor.

InterruptPV
Interrupt PowerVisor.

* 154 4 PowerVisor.task

* 158 4 Input request block

TheWizCorner.hyper 13 / 32

* 162 4 Input device port
166 4 Pointer to first history line

The format of one history line is the following :
<next>.L <prev>.L <Size>.W <string>

One history line is a simple EXEC block. If you
want to free one you must make sure that you
use <Size>.W for size, and that the double linked
list remains correct, 166:4 (this field) must
point to the first history line (may be 0 if
there are no history lines) and 98:4 must point
to the last history line in the history buffer.
Note that <prev>.L is 0 for the first history
line (the one pointed to by 166:4) and <next>.L
is 0 for the last history line (the one pointed
to by 98:4).
Also make sure that 252:4 (the pointer to the
history line we are scanning) points to 0 (the
easy way) or points to an existing history line
(the hard way) when you delete a line.
If you delete or add a history line you must also
make sure to update 170:4 (this is not neccessary
if you use the standard pvcall functions to add
a history line)

170 4 Number of lines in history
174 4 Maximum number of lines in history (default 20)
178 32 Code table

Each bit in this table represents a code. If
the bit is 1 this means that there is a macro
with this code defined.

210 4 Pointer to first alias structure (or 0 if there
are no aliases)

Each alias structure looks as follows :

offs size function
--
0 4 Next alias string (0 for last)
4 4 Previous alias string (0 for first
8 4 Pointer to command string (PV block)
12 4 Pointer to alias string (PV block)

It is safe to change this list and to replace
strings as long as you respect the double linked
list and give valid PV blocks in each structure.
You may free the two strings (with pvcall 51)
if you replace them with other PV blocks.
Note that an alias structure is an EXEC block.

214 4 Pointer to scriptline
Make sure that you respect the maximum line length
(see 218:2) when you change this pointer.

218 2 Default line length
220 1 Character used for comments (default ;)
221 1 Character used for feedback suppress (default ~)
222 1 Character used for quick exec (default \)
223 1 Character used to suppress output (default -)

TheWizCorner.hyper 14 / 32

224 1 Last command
0 normal command
1 memory command
2 unasm
3 view

225 1 Feedback mode
226 1 Autolist mode

* 227 1 If 1 we are in hold mode (screens are closed)
< 228 1 >

229 1 Input device command number

nr name function
--
1 NEXTWIN Make next logwin the scroll

window
2 SCROLL1UP Scroll logwin one line up
3 SCROLLPGUP Scroll logwin five lines up
4 SCROLLHOME Scroll to home position
5 SCROLLEND Scroll to bottom position
6 SCROLL1DO Scroll one line down
7 SCROLLPGDO Scroll five lines down
8 SCROLLRIGHT Scroll to the complete right

side
9 SCROLL1RI Scroll one column right
10 SCROLL1LE Scroll one column left
11 DSCROLL1UP Scroll debug window one word

up
12 DSCROLLPGUP Scroll debug window 20 words

up
13 DSCROLL1DO Scroll debug window one word

down
14 DSCROLLPGDO Scroll debug window 20 words

down
15 DSCROLLPC Scroll debug window to PC
16 EXEC Execute command (ptr in 230:4)
17 SNAP Snap string (ptr in 230:4)

230 4 Pointer to argument for IDC command EXEC.
234 14 List containing the macros (key attachements).

One macro node looks like this :

offs size function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (not used)
10 4 ln_Name (not used)
14 2 Code for key
16 2 Qualifier
18 4 Commandstring (EXEC block)
22 2 Length of command string
24 2 Flags

INVISIBLE = 1 If set, command is
not added to stringgadget
before it is executed. It is
executed with IDC commands

TheWizCorner.hyper 15 / 32

SNAP = 2. If set, command is
snapped to the current
position in the stringgadget.
Nothing is executed

HOLDKEY = 4. If set, the attached
key is not removed from the
input event list

248 4 Pointer to workbench message (or 0 if started
from cli)

252 4 Pointer to history line we are scanning, if 0
we are typing a new line or the stringgadget
is empty (See the history variables above for
more information).
This pointer is used by the general input routine
and by the input handler to scan through the
history buffer. You can use pvcall 2 and pvcall 3
to change this pointer or you can change it
yourselves

1.7 The Wizard Corner : eval base (pvcall 30)

Offset Size Function

< 0 8 >

8 8 Variables and functions (PV memory block)
Format for variables and functions:

<Value or pointer>.L <Name len>.B <Type>.B
<Name> [<pad>.B] [<spec>.L]

<Type>
0 = variable
1 = constant
2 = special
3 = function

<spec> is pointer to routine to call when
variable changes (only when <Type> == 2)

Note that you better not change the variables
’error’ and ’rc’. These should remain on the
same position. This is because PowerVisor accesses
these variables with a fixed offset from the start
of the variable list.

16 18 Operator priorities
One byte for each operator. Priorities between
1 and 10 are supported (1 is low priority)

Op Function Default priority
--
^ Xor 4
& And 5
| Or 3

* Multiply 10
/ Divide 10
% Modulo 10
+ Add 9
- Subtract 9

TheWizCorner.hyper 16 / 32

> Greater than 7
< Less than 7
>= Greater or equal 7
<= Less or equal 7
!= Not equal 6
== Equal 6
<< Left shift 8
>> Right shift 8
&& Logical and 2
|| Logical or 1

1.8 The Wizard Corner : arexx base (pvcall 31)

Offset Size Function

* 0 4 Rexx signal bit
4 2 Sync flag (if 1 we are in Sync)

* 6 2 Hide flag (if 1 we are in Hide)

1.9 The Wizard Corner : debug base (pvcall 32)

Offset Size Function

* 0 4 If floatingpoint coprocessor present this variable
contains 4, else 0

4 14 List containing all debug tasks.
One debug node looks like this :

offs size function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (not used)
10 4 ln_Name
14 4 MatchWord = ’DBUG’
18 1 Mode (mode)

Nr Name Function

0 NONE Doing nothing
1 TRACE Tracing
2 EXEC Executing

19 1 SMode (special mode)

Nr Name Function

0 NORMAL Normal debugging
1 TTRACE Temporary trace
2 CRASH There was a crash
3 BREAK There was a

TheWizCorner.hyper 17 / 32

breakpoint
4 TBREAK Break due to trace
5 WAIT Waiting for

PowerVisor
6 ERROR There was an error

20 4 BPTR to loaded segment (only with
’debug l’)

24 4 Address of instruction to execute
28 4 Pointer to temporary routine
32 4 Pointer to trace exception routine
36 4 Address to restore breakpoint

(only if SMode = TTRACE)
40 4 Additional information for tracing.
44 1 TMode (trace mode) <n> is 40:4

Nr Name Trace Function

0 NORMAL Normal
1 AFTER <n> instructions
2 STEP endlessly
3 UNTIL until pc=<n>
4 REG until register

changes
5 COND until condition true
6 BRANCH until branch
7 FORCE force tracing

(trace f)
8 OSCALL until OS call used
9 SKIP for trace t

<45 1 >
46 1 TDNestCnt
47 1 IDNestCnt
48 1 TaskState (TS_READY or TS_WAIT)
49 1 Dirty. If true our debug window

needs full refreshing
50 4 TC_SIGWAIT
54 4 Crash number
58 4 Additional argument for some trace

modes
62 4 Pointer to task corresponding with

debug node
66 4 Top PC visible in debug window
70 4 Bottom PC visible in debug window
74 2 Last line where we must dump an

instruction (starting with 1,
relative to the top of the debug
logical window)

76 32 Number of bytes for each instruction
on screen (32 bytes, one byte for
each line)

108 4 Initial programcounter
112 4 Previous trapcode for task
116 12 PV quick block for symbol values.

Each element in this block is a
value and an offset in the following

TheWizCorner.hyper 18 / 32

string quickblock (8 bytes per
entry).

128 12 PV quick block containing all
strings for the symbols. All strings
in this block are null terminated.

140 14 Breakpoint list.
<154 2 >
<156 4 >
<160 2 >
<162 1 >
<163 1 >
164 4 Pointer to quit code on stack.
168 4 Original quit code. (Code that is

called when the task quits).
172 4 SP
176 4 PC
180 2 SR
182 15*4 Registers
<242 16 >
258 4 Pointer to first source structure
262 4 Pointer to current source structure

One breakpoint node looks like this :

offs size function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (not used)
10 4 ln_Name (not used)
14 2 Number
16 4 Address of breakpoint
20 2 Original contents of memory
22 1 Type

T temporary breakpoint
t temporary breakpoint

(internal)
N normal breakpoint
P profile breakpoint
C conditional breakpoint
A break after <n> passes
s temporary breakpoint

(internal)
<23 1 >
24 4 Usage count
28 4 Additional argument

conditional string if type is ’C’
breaknumber if type is ’A’

32 4 Routine to jump to if a break occurs
<36 4 >

One source structure looks like this :

offs size function
--

TheWizCorner.hyper 19 / 32

0 4 Next source structure
4 4 Previous source structure
8 4 Pointer to source filename
12 4 Size of following block
16 4 Pointer to the block with linenumber

information. Each info block is 8
bytes long. The first long is
the address and the second long is
the line number in this source

20 4 Size of the following block
24 4 Pointer to the loaded file or 0
28 4 Current linenumber for program-

counter
32 4 Top linenumber visible in Source

logical window
36 4 Bottom linenumber visible in Source

logical window
40 4 Current hilighted linenumber

(linenumber in Source logical
window, not the linenumber in the
file)

18 4 Current debug task
< 22 16 >
< 38 8 >

46 1 Show register info after each trace (default 1)
47 1 Give disassembly after each trace (default 1)
48 2 Number of lines to disassemble (default 5)
50 2 Show previous instruction after each trace

(default 1)

1.10 The Wizard Corner : file base (pvcall 33)

Offset Size Function

0 4 Pointer to CLI outputhandle (DOS file)
4 4 Pointer to control file (PV handle)
8 4 Pointer to help file (PV handle)
12 4 Pointer to script file (PV handle)
16 4 Pointer to log file (DOS file)
20 4 Pointer to log logical window

1.11 The Wizard Corner : general base (pvcall 34)

Offset Size Function

* 0 4 Pointer to PowerVisor (process)
4 4 Lower bound for stack pointer when PowerVisor

should give a ’Possible stack overflow’ error.
This pointer is 512 bytes away from the TC_SPLOWER
value of the PowerVisor task. You can change
this value if you think it is not safe enough or

TheWizCorner.hyper 20 / 32

it is too safe.
This bound is checked whenever a command is
executed (a group is not a command but a group
of commands) and in the recursive part of the
expression evaluator.

* 8 4 Trackdisk request block

* 12 4 Trackdisk port

* 16 4 Old ExecTrapCode

* 20 4 MMUType
0 = no MMU
68851, 68030 or 68040

* 24 2 1 if 68020 or higher, else 0

* 26 4 Block with account tasks

* 30 4 Old Switch function

* 34 4 Old Alert function

* 38 4 Old AddTask function

* 42 4 Old AutoRequest function
46 4 Stack fail level (default 40)

< 50 8 >
58 14 List with freezed tasks
72 14 List with crashed tasks

One crash node looks like this :

offs size function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (not used)
10 4 ln_Name
14 4 Crashed task
18 4 TrapNumber
22 4 2ndInfo (from Alert)
26 1 0 if trap, 1 if guru, 2 if stack

fail
<27 1 >
28 4 SP
32 4 PC
36 2 SR
38 15*4 Registers

86 14 List with fd-files
One fd-file node looks like this :

offs size function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (not used)
10 4 ln_Name
14 4 Library
18 2 Bias
20 8 PV memory block containing all

functions
28 8 PV memory block containing all

strings

TheWizCorner.hyper 21 / 32

36 2 Number of functions

100 14 List with functions we are monitoring (see the
’AddFunc’ command)
One function node looks like this :

offs size function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (not used)
10 4 ln_Name
14 4 Library
18 2 Offset
20 4 Task to monitor (if zero, all tasks)
24 4 Usage count
28 4 Pointer to count code (EXEC block)
32 4 Size of count code
36 4 Old function to restore later
40 2 Type flags

0 = Normal
1 = Led
2 = With register information
3 = Led and register information
8 = Exec

42 2 Position in following block where
the last added task is added

44 8*4 8 pointers to the 8 last tasks using
this function

76 8*56 All registers for each task (d0-d7/
a0-a5)

524 4 Ptr to command

114 34+6 The PowerVisor port. This is an Exec message port
followed by a longword containing the pointer to
the PVCallTable and a private word.
You can find the pointer to the PVCallTable at
offset 34 in this port.

* 154 1 ’mode patch’. 0 If patch to Exec AddTask is not
applied. 1 if patch applied.

155 1 Old priority (before PowerVisor set it to 4)

* 156 4 Timer device request block (for ’stack’ command)

* 160 4 Timer device port
164 4 Maximum stack usage (like ’getstack’ function)
168 4 Task we are looking at with ’stack’ command
172 4 Number of microseconds to wait

1.12 The Wizard Corner : list base (pvcall 35)

Offset Size Function

* 0 4 Old WindowPtr from PowerVisor process

TheWizCorner.hyper 22 / 32

4 4 Prompt string
8 2 Current list number

< 10 2 >
12 14 List containing all structure nodes.

(Warning ! Structure nodes and structure
definitions are not the same)
One structure node looks like this :

offs size function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (used to sort the nodes by

length of name)
10 4 ln_Name
14 4 MatchWord = ’PVSD’
18 4 Pointer to string block (PV block)
22 4 Pointer to structure definition (PV

block), (see below)
26 2 Length of structure

Structure definitions look like this :

{ <String>.L <Type>.W <Offset>.W ... } 0.L 0.L

<String> is a pointer to the string
corresponding with the name of a structure
element.

<Type>.W can be somethine like :

0 = byte
1 = word
2 = long
3 = string
4 = object in object (like ViewPort in

Screen)

To do BPTR to APTR conversion you must add
128 to this word.

<Offset>.W is the offset of the element in
the structure.

26 30*40 All infoblocks (see above) for all standard lists.
In the following order (size is 28*40 for AmigaDOS
1.3) :

Exec
Intb
Task
Libs
Devs
Reso
Memr
Intr

TheWizCorner.hyper 23 / 32

Port
Wins
Scrs
Font
Dosd
Func
Sema
Resm
Fils
Lock
IHan
FDFi
Attc
Crsh
Graf
Dbug
Stru
PubS (not in AmigaDOS 1.3 version)
Moni (not in AmigaDOS 1.3 version)
Conf
LWin
PWin

An infoblock is a description of a list.
One infoblock looks like this :

offs size function
--
0 4 Prompt string
4 1 Item number
5 1 Control byte. This byte controls how

you should go to the start of
the list.

-1 = routine (like ’DosD’)
6:4 is pointer to routine
to call to go to the first
element of the list

-2 = structure (like ’Exec’)
6:4 is pointer to pointer
to structure

-3 = (like ’Fils’)
6:4 is pointer to routine
to call. This routine will
do the complete list
without any intervention at
all

If Control is not equal to -1, -2
or -3 the start of the list is
computed as follows :

The byte is split in two
nibbles :

bbbbbbbb
/\

TheWizCorner.hyper 24 / 32

/ \
/ \

llll rrrr

The value in 6:4 is loaded. If
’llll’ is equal to 0 nothing
happens with this value, if it
is equal to 1 you must take
the indirection one step
further (take the contents of
the value), if it is equal to
2 you must first convert the
value from BPTR to APTR before
you take the contents of this
value.

We continue with the value
obtained from the previous
algorithm and add 10:2 to it.
Now we look at ’rrrr’. If it
is equal to 0 we do nothing,
if it is equal to 1 we take
the contents of this value, if
it is equal to 2 we convert
the value from BPTR to APTR
before we take the contents.

Now we have computed the
address of the first element
in the list.

6 4 Pointer to the routine to go to the
base of a list or the pointer to the
base of the list (what it really is
depends on the value of the control
byte 5:1) The routine must return
the pointer to the first list
element in a2. This routine may
initialize d7 for use by the next
element routine (see below).

10 2 Offset to add to 6:4 (depending on
the control byte 5:1)

12 4 If control byte is -2 this variable
contains the pointer to the
structure definition (not the node)
(structure definitions are described
above) If control byte is -3 this
variable is not used.
Else this variable contains the
pointer to the routine to go to the
next element in the list. This
routine must preserve a0 and a1. d7
is free to be used as an external
variable (may be setup by startup
function). a2 is pointer to list
element currently listing. This
routine must return the pointer

TheWizCorner.hyper 25 / 32

to the next element in the list in
a2 and set the Z flag to true if the
end of the list is reached.

16 4 Pointer to header string
20 4 Pointer to format string (RawDoFMT

format)
24 4 Argument string for ’list’ command
28 1 Must contain 0
29 1 If true, 30:4 is a pointer to a

structure definition (not the node)
containing all the information to be
printed when the ’info’ command is
used.
Else 30:4 is a pointer to a routine
doing the same thing.

30 4 Routine or structure definition. for
the ’info’ command. If 0, there is
no more info for this list.

34 4 Pointer to routine printing one line
for one element of the list.
This routine expects the pointer to
the list element in a2.

38 2 Offset for the name element in
the structure

1.13 The Wizard Corner : screen base (pvcall 40)

Offset Size Function

0 1 Integer display mode
0 = hex
1 = decimal
2 = both

1 1 Scroll mode
0 = no -MORE- checking
1 = -MORE- checking

2 1 Add space after snap
0 = don’t add space
1 = do

3 1 LoneSpc mode
0 = no LoneSpc
1 = LoneSpc

4 1 SBottom mode
0 = NoSBottom
1 = SBottom

5 1 If true PowerVisor will not clear line the next
time ’Scan’ is started.

< 6 1 >
7 1 Interlace mode

0 = no interlace
1 = interlace

8 1 FancyMode
0 = 1 bitplane
1 = 2 bitplanes

< 9 1 >

TheWizCorner.hyper 26 / 32

* 10 4 Length of stringgadget buffer line (not used)
14 4 Pointer to stringgadget buffer
18 2 Position of cursor in stringgadget
20 (2*4)*7 Default sizes and parameters for each logical

window (like ’prefs logwin’ command)
<columns>.W <rows>.W <mask>.W <flags>.W
.
. (6 times for each logical window)
. (Main,Extra,Refresh,Debug,PPrint,
. Rexx,Source)
.

76 4 Pointer to ’snap’ command (PV block)
< 80 4 >
< 84 4 >

88 4 Pointer to ’Main’ physical window
A physical window structure looks like this :

Offs Size Function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (not used)
10 4 ln_Name (EXEC block)
14 48 NewWindow structure
62 4 Window
66 4 Signal set for IDCMP
70 2 Last code for VANILLAKEY
72 2 Last qualifier
74 1 LeftBorder for masterbox
75 1 TopBorder
76 1 RightBorder
77 1 BottomBorder
78 4 Pointer to masterbox
82 4 Pointer to Global structure
86 14 Logical window list

92 4 Pointer to ’Main’ logical window
A logical window structure looks like this :

Offs Size Function
--
0 4 ln_Succ
4 4 ln_Pred
8 1 ln_Type
9 1 ln_Pri (not used)
10 4 ln_Name (EXEC block)
14 4 pointer to box
18 2 x real coordinate (in physical

window)
20 2 y real coordinate
22 2 w real width
24 2 h real height
26 2 first visible column in logical

window
28 2 first visible row
30 2 current column coordinate

TheWizCorner.hyper 27 / 32

32 2 current row coordinate
34 2 visible width in characters
36 2 visible height in characters
38 4 flags

1 Print on file
2 Print on screen
4 Enable -MORE- check
8 private
16 private
32 Total home is equal to

(0,0)
64 statusline on/off
128 breakcheck on/off
256 auto output snap

42 8 TextAttr
A TextAttr structure looks like
this :

Offs Size Function

0 4 Name
4 2 YSize
6 1 Style
7 1 Flags

50 4 Pointer to font
54 2 Font X character width
56 2 Font Y character height
58 2 Font baseline
60 4 Pointer to physical window (MainPW)
64 2 number of columns optimal
66 2 number of rows optimal
68 2 number of lines in buffer
70 2 number of columns per line in buffer
72 4 pointer to buffer

These is a table of (68:2)+1
pointers to lines. Each line is
70:2 chars long (plus one for the
attribute in the beginning of the
line) If this attribute is non-null
the line will be hilighted

76 4 Log file (DOS file)
80 2 number of lines passed (for -MORE-

check)
<82 4 >
86 4 Pointer to extra title (user of

logical window is responsible for
remembering and freeing the memory
for this title)

90 1 if TRUE we are active
91 1 TopBorder used for statusline (10 if

statusline or 0 if no statusline)
92 2 real top coordinate

92:2 = 20:2-91:1
94 4 userdata (used by PowerVisor)

TheWizCorner.hyper 28 / 32

A box structure looks like this :

Offs Size Function
--
0 4 Parent box or NULL if masterbox
4 4 Child A (not used if box is ATOMIC)
8 4 Child B
12 4 Logical window (only if box is

ATOMIC)
16 4 Physical window
20 2 Share for child A (in % x 10)
22 1 Type

0 UPDOWN
1 LEFTRIGHT
2 ATOMIC

23 1 If true our box needs a cleanup
24 1 Left border for inner box
25 1 Top border
26 1 Right border
27 1 Bottom border
28 2 x position after accounting for

window and inner box. These
variables define the box that we
really can use for output (for the
logwin)

30 2 y
32 2 w
34 2 h
36 2 x1 position for scrollbar
38 2 y1
40 2 x2
42 2 y2

96 4 Pointer to ’Refresh’ logical window
100 4 Pointer to ’Debug’ logical window
104 4 Pointer to ’Extra’ logical window
108 4 Pointer to ’PPrint’ logical window
112 4 Pointer to ’Rexx’ logical window
116 4 Pointer to ’Source’ logical window
120 4 Pointer to current logical window
124 2 location of horizontal prompt (default 1) relative

to left side of window (plus border).
126 2 left location of stringgadget relative to

left side of window (plus border) (default 50).
128 2 offset for right side of stringgadget relative

to the rightside of the window (default 0).
130 4 Pointer to PowerVisor steal screen

This is 0 if PowerVisor is on its own screen
134 4 Pointer to PowerVisor real screen

This is 0 is PowerVisor is on another screen
138 4 IntuiMsg class
142 2 IntuiMsg code
144 4 IntuiMsg IAddress
148 2 IntuiMsg MouseX
150 2 IntuiMsg MouseY
152 2 IntuiMsg Qualifier

TheWizCorner.hyper 29 / 32

154 4 Pointer to Global

Offs Size Function
--
0 4 ln_Succ
4 4 ln_Pred
8 14 Physical window list
22 4 Pointer to active logical window
26 4 Signal set for all physical windows
<30 4 >

< 158 4 >
< 162 4 >

166 18*6 For each logical window except ’Main’.
(Note that this area is saved with ’saveconfig’,
so any changes you make here are permanent when
you make a config-file)

The first 8 bytes of each entry contain the NULL
terminated string used to open the logical window
(with the predefined command). The string can be
something like :

’0110d ’,0
which means :

go to master box
take child 0
take child 1 of this child
take child 1 of this child
take child 0 of this child
open logical window down this child

default strings are ’u ’,0

the word after this string is the share that this
window should take (in percentages x10)
default is 300.

After the 8 bytes for the string and the word
for the share value follows the 4 words for the
position for the physical window if mode ’intui’
is true. If these positions are used, the other
share variables are ignored (’mode intui’).

(Extra,Debug,Refresh,PPrint,Rexx,Source)

274 4 Startup flags (Updated and saved by ’saveconfig’)
bit 0 : if true we open on workbench screen
bit 1 : if true we open on pv screen but with

non-backdrop screen
278 2*4 Four words describing the startup window (Updated

and saved by ’saveconfig’).
(x,y,w,h)

286 2*2 Two words describing the startup screen (like
the ’prefs screen’ command).
(w,h)

290 24 24 pens (only 21 used at this moment) for fancy
screens. (See the ’InstallingPowerVisor’ file for
more information about these pens.

TheWizCorner.hyper 30 / 32

314 24 24 pens for no-fancy screens.
338 4 Pointer to current pen table (one of the above

tables, but you may make your own pen table and
let this variable point to it)

342 6 string with -BUSY- prompt
348 6 string with -MORE- prompt
354 6 string with -WAIT- prompt
360 6 string with ------ prompt
366 4 string with ???? prompt
370 2 feedback prompt ’> ’
372 4 the locked logical window (this is the logical

window that is waiting for input)
376 4 the pointer to the prompt string for the locked

logical window
380 1 lock state, the state of the stringgadget for the

locked logical window (1 is no stringgadget, 0 is
normal stringgadget)

381 1 Busy mode (0 = normal, 1 = -BUSY-, 2 = a window is
waiting for input)

* 382 1 GadgetExists. If 1 the stringgadget exists
383 1 IntuiWinMode (’mode intui’)

0 = nointui
1 = intui

384 34 Fontname (default topaz.font), area is saved with
the ’saveconfig’ command

418 4 Start of TextAttr. Pointer to 384:34 (fontname)
422 4 Size of font (word), style (byte) and flags (byte)

This area is saved with the ’saveconfig’ command
426 2 Height of all logical window borders

< 428 2 >
430 2 Drag tolerancy at the left of the bar between two

logical windows. This value indicates the amount
of pixels at the left side of this line that
PowerVisor will accept as the area used to drag
this line

432 2 Drag tolerancy at the top of the bar between two
logical windows

434 2 Drag tolerancy at the right of the bar between two
logical windows

436 2 Drag tolerancy at the bottom of the bar between
two logical windows. This tolerancy value is
normally larger (or just as large) as the height
of the logical window border (426:2)

438 2 Horizontal size tolerancy. This is the minimum
width in pixels allowed for a logical window

440 2 Vertical size tolerancy. This is the minimum
height in pixels allowed for a logical window

442 4 Pointer to requester structure allocated with
rtAllocRequestA in reqtools.library

* 446 4 Pointer to reqtools.library (or 0 if no reqtools
found)

1.14 The Wizard Corner : memory base (pvcall 41)

TheWizCorner.hyper 31 / 32

Offset Size Function

0 4 List with all automatic clear memory. You can
add things to this list with ’pvcall 49’.
This pointer is actually the pointer to the first
element in the list, and the first element in the
autoclear list is the LAST element that was added
(this is the oldest entry).
Each entry in this list contains a pointer to the
next entry (at offset 0) and a pointer to a PV
block (at offset 4).

4 4 Pointer to the last element in the autoclear list
(previous list).

8 2 The number of entries in the autoclear list.
10 2 The maximum number of entries in the autoclear

list. You change this number (default 10) but you
must make sure that the list contains less entries
than the number you supply as a maximum.

12 12 PV quick block containing the pointers to all
allocated memory (with the ’alloc’ function and
the ’pvcall 55’ command).

24 8 PV memory block for the current tag list.
Format for one element in this PV memory block :

<Address>.L <Bytes>.L <Type>.L <Extra>.L

<Address> is start of memory block
<Bytes> is number of bytes for memory block
<Type> is one of

1 = BYTEASCII BA
2 = WORDASCII WA
3 = LONGASCII LA
4 = ASCII AS
5 = CODE CO
6 = STRUCT ST

<Extra> is the pointer to the structure
definition if <Type> = 6.

32 4 Number of current default tag list (0..15)
36 16*8 16 PV memory blocks containing all tag lists.
164 4 PV quick memory treshold (default 256). This is

the extra memory that is allocated to gain speed.
If treshold is bigger you loose more memory but
you gain speed.

168 4 Pointer to next memory to list (with ’memory’,
’unasm’ or ’view’)

172 4 Pointer to address to continue the search with
’next’.

176 4 Remaining number of bytes to search.
180 4 Pointer to string to search (PV block).
184 1 Long Mode

0 = mode byte
1 = mode long
2 = mode word
3 = mode ascii

TheWizCorner.hyper 32 / 32

185 1 HexUnAsm mode
0 = don’t show hex when disassembling
1 = show hex

< 186 9 >

	TheWizCorner.hyper
	The Wizard Corner (Wed Jul 15 16:44:17 1992)
	The Wizard Corner : Introduction
	The Wizard Corner : The 'pvcall' command
	The Wizard Corner : Description of internal memory formats
	The Wizard Corner : The bases
	The Wizard Corner : main base (pvcall 36)
	The Wizard Corner : eval base (pvcall 30)
	The Wizard Corner : arexx base (pvcall 31)
	The Wizard Corner : debug base (pvcall 32)
	The Wizard Corner : file base (pvcall 33)
	The Wizard Corner : general base (pvcall 34)
	The Wizard Corner : list base (pvcall 35)
	The Wizard Corner : screen base (pvcall 40)
	The Wizard Corner : memory base (pvcall 41)

